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Abstract

AutoGen is a multi-agent system platform designed for large language
models, providing greater flexibility and scalability for complex tasks
through modular role assignment, tool invocation, and message orches-
tration. Adopting an operating-system-level engineering perspective, this
paper systematically reviews the core architecture of AutoGen and intro-
duces a generalizable agent taxonomy for multi-agent systems. Based on
this framework, we identify and clarify several critical issues present in the
current platform and propose targeted optimization strategies. Further-
more, we conduct a preliminary exploration of how knowledge editing and
dynamic boundary adjustment mechanisms can enhance the capabilities
of expert agents, offering theoretical references for future research.

1 Introduction

In recent years, neural network architectures based on self-attention mecha-
nisms, particularly the Transformer [36], have become the mainstream approach
in the field of natural language processing (NLP). As model sizes have increased,
with parameter counts surpassing hundreds of billions [2| [13], large language
models (LLMs) have significantly propelled the development of both NLP and
agent systems. Pretrained models represented by the GPT series [31], 2] and
BERT [5] are widely applied in downstream tasks, serving as a crucial founda-
tion for agent-based systems.

In the study of agent systems and complex automated tasks, traditional so-
lutions have largely relied on single-agent architectures, which are suitable for
simple dialogue generation, information retrieval, and tool invocation. How-
ever, as task requirements become more complex, the limitations of single-agent
architectures in task decomposition, multi-role collaboration, and cross-domain
information integration have become increasingly apparent. Benefiting from
the enhanced understanding and reasoning capabilities of large language mod-
els, both academia and industry have begun to explore multi-agent collaborative
frameworks, where role allocation and efficient information flow are leveraged
to tackle complex tasks [16] [39].



The AutoGen framework is a response to this trend. By integrating large
language model capabilities with multi-agent collaboration mechanisms, Auto-
Gen enables researchers to construct complex dialogue systems and task-solving
workflows in a modular and scalable manner. Through abstracting agent roles,
tool interfaces, and message-passing mechanisms, AutoGen achieves flexible
agent composition and cooperation, thereby improving system generality and
practical utility.

Preliminary experiments show that for small- and medium-scale tasks, the
performance gap between single-agent and multi-agent systems is limited, and
the additional overhead introduced by multi-agent collaboration—such as to-
ken consumption and context passing—must be carefully weighed. However,
in large-scale and diversified task environments, multi-agent systems demon-
strate stronger adaptability and scalability. AutoGen has exhibited superior
performance in multiple benchmark evaluations, especially in complex collabo-
rative task scenarios, where some metrics already match or surpass traditional
single-agent solutions.
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Figure 1: multi-agent performance comparison.

In summary, this paper focuses on the multi-agent dialogue and task orches-
tration mechanisms enabled by the AutoGen architecture. We systematically
analyze its advantages and challenges in practical applications and conduct ex-
periments based on the latest open-source framework, aiming to provide insights
for the design and implementation of next-generation agent systems.

The main contributions of this work are as follows:



A systematic exposition of AutoGen’s design principles, core components,
and practical usage.

e An analysis of agent configuration patterns and typical multi-agent col-
laboration strategies in AutoGen.

e A comparative study of mainstream platforms, with a novel classification
scheme for multi-agent systems that emphasizes the multi-dimensional
evaluation of agents, including role knowledge, tool-operational knowl-
edge, and overall knowledge boundaries.

e An analysis of AutoGen’s advantages in supporting agent diversity and
interactive flexibility, as well as its limitations in logical consistency and
cost efficiency.

e A proposal of knowledge type classification criteria based on agent taxon-
omy, providing references for future research.

2 Related Work
2.1 General Related Work

As previously mentioned, early applications of agent systems typically relied on
single-agent architectures, utilizing large language models (LLMs) via prompt
chaining and API invocation for dialogue generation, information retrieval, and
external tool utilization, thus significantly improving usability for relatively sim-
ple automation tasks. Representative examples include the ChatGPT plugin
ecosystem and AutoGPT platforms.

However, as single-agent architectures increasingly reveal limitations in in-
formation flow, role specialization, and cross-domain collaboration, multi-agent
architectures have gained substantial attention within academia and complex
application scenarios, becoming one of the most active areas of research aimed
at enhancing LLM systems. For instance, the CAMEL framework systemati-
cally introduced multi-role collaborative mechanisms based on role-playing to
decompose complex reasoning chains [I4]. LangChain emphasizes external tool
integration to strengthen reasoning and execution capabilities, while projects
such as Smallville [28] explore long-term agent collaboration based on social
interactions, enriching the evolutionary modes of agent ecosystems.

Building upon these explorations, AutoGen was jointly proposed by institu-
tions such as Microsoft Research and Pennsylvania State University [39]. This
framework further incorporates system-level abstraction and scheduling mecha-
nisms, officially described as a ”multi-agent conversational framework for build-
ing AI agents and applications” [39]. In this paper, we regard AutoGen as
an ”operating system” tailored for large language models (LLMs)—a concep-
tual alignment similar to definitions given by the AG2 branch—where each
agent can be viewed as a heavyweight remote reasoning thread. AutoGen not
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Figure 2: Representative multi-agent frameworks.

only emphasizes flexible agent roles and task definitions but also manages run-
time scheduling, inter-thread communication, and system-level operations, thus
achieving a unified management capability for parallel tasks analogous to tra-
ditional operating systems [23]. The official architecture diagram (see Fig. 3)
clearly illustrates this design philosophy.
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Figure 3: The official AutoGen architecture diagram [23].

Notably, in November 2024, the AutoGen project underwent a community-
driven fork initiated by original development team members, known as AG2, em-
phasizing architectural compatibility and openness. Concurrently, Microsoft’s
official team continues to evolve the main AutoGen branch and has formally
announced deep collaboration between AutoGen and Semantic Kernel, aiming
at unifying and interoperating the multi-agent runtime (autogen-core) with Se-
mantic Kernel [22] [10].

Furthermore, recent research efforts around multi-agent collaboration, tool
augmentation, and dialogue management continue to flourish. For example,
StateFlow introduced state-driven workflows for task-solving, and Multi-Agent
Debate explored adversarial reasoning among agents. Collectively, these studies
provide important methodological foundations and technical reserves for devel-
oping next-generation LLM-based intelligent applications.



Overall, the AutoGen project and its community fork AG2 substantially
advance the practical application of multi-agent systems in complex task sce-
narios through their modular design, multi-role collaboration, and system-level
scheduling mechanisms. This paper will further discuss optimization approaches
and practical implications of multi-agent collaboration within the AutoGen
framework.

2.2 Focused Project: AutoGen Framework and Multi-Agent
Mechanisms

The AutoGen project was initially launched by Microsoft Research with the
goal of enhancing the effective application of large language models (LLMs)
in multi-agent collaboration scenarios. It addresses bottlenecks encountered
by traditional single-agent systems in handling complex tasks, including long-
context management, tool invocation, role specialization, and task coordination.

By early 2025, the AutoGen framework had evolved to version v0.4. Com-
pared with v0.2, v0.4 underwent significant architectural and implementation
restructuring, notably introducing stricter asynchronous scheduling mechanisms
and interface standards, requiring extensive revisions to previous documentation
(Appendix B).

In version 0.4, AutoGen maintains its core strengths in modular design and
platform openness. Its architecture primarily comprises three modules: autogen-
core, autogen-agentchat, and autogen-ext, which respectively handle founda-
tional logic, agent interaction mechanisms, and external model integration.
AutoGen also features visualization interfaces and performance benchmarking
modules to enhance development efficiency and system reliability (Appendices
A C).

Regarding multi-agent collaboration, AutoGen offers a variety of built-in
agent types, all inheriting from a unified abstract base class BaseChatAgent,
which defines core interfaces and methods for message handling (Appendix D).
AutoGen supports flexible group-chat scheduling methods like round robin to
automatically manage agent interaction sequences, while each agent can cus-
tomize message processing via callback functions, balancing ease of use and
high customizability (Appendix F).

In the current example directory, the official implementations continue to
reflect the multi-agent configuration strategies recommended in the 2023 publi-
cation (Appendix E).

Although the official implementation and recommended configurations can
handle certain typical application scenarios, there remain unresolved issues in
practical tasks such as delayed responses in tool invocation, imprecise knowledge
boundary definitions, and challenges in dynamic knowledge updates and inter-
active flow optimization. Overall, despite AutoGen’s strengths in architectural
openness and multi-agent configuration strategies, further improvements are
necessary in practical aspects such as tool invocation response efficiency, granu-
lar knowledge control, and dynamic dialogue flow optimization. This paper will
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Figure 4: Screenshot from the official AutoGen example directory.

address these shortcomings, proposing corresponding optimization approaches
and practical recommendations.

3 Discussion

As presented in Appendix F, we demonstrate several task-specific examples
based on AutoGen. This section begins by comparing AutoGen and the CAMEL
platform, then explores the theoretical differences in multi-agent system archi-
tectures. We clarify several key definitions, discuss the core strengths of Auto-
Gen, and highlight the challenges it may face in future development.

3.1 Comparison of Built-in Agents in AutoGen and CAMEL

It is worth noting that CAMEL also provides built-in agent classes for con-
structing LLM-based multi-agent systems (see Appendix D). Both AutoGen
and CAMEL adopt a similar three-layer architecture:

e The top layer defines abstract base classes for agent interfaces (e.g., BaseAgent

in CAMEL and Agent or LLMAgent in AutoGen);

e The middle layer consists of general agents that implement fundamen-
tal dialogue logic and tool invocation mechanisms (e.g., ChatAgent in
CAMEL and ConversableAgent in AutoGen);

e The bottom layer comprises various subclasses for specific, fine-grained
task roles.
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Figure 5: Agent interaction mechanism as illustrated in the AutoGen paper
[39].

Although both frameworks share similar inheritance structures and foun-
dational types, their implementation strategies and design philosophies show
significant differences:

e AutoGen emphasizes function-driven tool invocation and fine-grained
control over dialogue processes, making it particularly well-suited for DevOps-
style engineering automation workflows (e.g., automated planning, execu-
tion, and review).

e CAMEL, on the other hand, focuses on emergent behaviors by defining a
variety of persona-based agents and cognitive roles (such as DeductiveReasonerAgent),
aiming to simulate knowledge organization and reasoning as in human col-
laborative dialogues.

These distinctions reflect two core philosophies: “engineering application-
oriented” for AutoGen, and “cognitive role-oriented” for CAMEL. AutoGen
is advantageous in strict and explicit business process automation, whereas
CAMEL’s persona-rich agent modeling is better suited to prototyping, social
simulation, or human-computer interaction scenarios. Rather than direct com-
petitors, the two frameworks are largely complementary and their positioning
affects user choices depending on the application scenario.

3.2 Agent Taxonomy Based on Functionality and Role

From the above comparison, it is clear that neither AutoGen nor CAMEL has
yet established a strictly theoretical agent taxonomy. Most built-in agent types
are encapsulated to address practical needs. Nevertheless, the different encap-
sulation strategies provide valuable insights for constructing an effective taxon-
omy. Specifically, the main distinction in agent encapsulation between the two
platforms can be captured along two dimensions:

e Functional agents: Focused on tool invocation, API operations, and
task execution;



¢ Role-playing agents: Focused on knowledge expression, semantic roles,
and cognitive characteristics.

In practice, neither AutoGen’s customized AssistantAgent nor CAMEL’s
role assignment agents can fully satisfy real-world task requirements as sin-
gle agent types. Often, “one-shot agents”—agents with both distinct persona
traits and tool invocation abilities—are needed. Thus, both functional and role-
playing agents may be considered specializations of the more general one-shot
agent paradigm.

3.3 Reconstruction and Optimization of Agent Taxonomy
from a Computational Theory Perspective

Building on these definitions, we introduce a cross-disciplinary perspective to
reconstruct the agent taxonomy from a computational theory standpoint.

In computer science, any LLM-driven agent can essentially be viewed as a
concrete instantiation of a Turing machine. Regardless of whether these agents
are tool-oriented, intelligence-oriented, or human-like, their computational and
reasoning limits are governed by the boundaries of Turing machine theory. That
is, problems unsolvable by a Turing machine (such as the halting problem)
are also unsolvable by these agents. Additionally, when dealing with massive
knowledge bases, large language models may encounter difficulties in knowledge
retrieval, leading to hallucinations and unreliable outputs. Therefore, while
enhancing agent knowledge capabilities, it is crucial to define clear knowledge
boundaries to ensure logical consistency and output reliability.

Drawing an analogy between Turing machines and programs, we seek a more
practical and actionable expression of agent knowledge boundaries. In com-
putational complexity theory, the class of “P problems” (problems solvable in
polynomial time) is often seen as a critical boundary for task manageability and
control. By incorporating the “P problem” framework into agent behavior and
capability design, we can more effectively delineate which tasks fall within an
agent’s controllable, predictable domain and which tasks exceed its capabilities,
thus requiring human intervention or additional constraints to improve system
safety and explainability.

Moreover, during agent knowledge modeling and reasoning, different “lan-
guage series” (such as natural or formal language) have a direct impact on
knowledge expression and inference. In other words, the so-called “knowledge
focus” essentially refers to the limitation imposed on agent abilities by the choice
of expression and reasoning language. This focus ensures consistency and con-
trollability in knowledge representation and task execution.

Based on these considerations, we propose a comprehensive and practice-
oriented agent taxonomy:

APIT tools 4 operational knowledge — tool-ness (of agent) (1)

APIT tools + operational knowledge = tool agent (2)



Knowledge focus (in expression) — role-ness (of agent) (3)

Well-defined knowledge boundary — expertness (of agent) (4)
Role-ness — Expertness = role-playing agent (5)

Role-ness + Expertness = role-incorporated agent (or expert agent) (6)
Tool-ness + Role-ness = one-shot agent (7)

Role-playing agent + Tool-ness = one-shot agent (Type 1) (8)

Role-incorporated agent + Tool-ness = one-shot agent (Type 2) 9)

This classification offers a theoretically rigorous and practically relevant
agent taxonomy, which can both guide real-world development and provide a
foundation for future research.

role-ness

Charter Driven Part
tool-ness
One Shot Agent. P —
Computability Agent expertness
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One Shot Agent Type 1

One Shot Agent:

One Shot Agent Type 2
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Figure 6: Evolution of agent taxonomy.

3.4 Multi-Agent Configuration Recommendations Based
on the Taxonomy

Based on the above agent taxonomy, we propose several recommendations for
practical multi-agent configuration:

e Decouple the execution and verification steps from knowledge-intensive
agents and assign them to dedicated tool agents, reducing risks of knowl-
edge conflict and logical inconsistency.



e For parts of a task involving multi-dimensional knowledge expression and
semantic role use, clarify whether role-playing, role-incorporated, or one-
shot agent (Type 1/2) is needed according to the specific task’s knowledge
focus and boundary requirements.

In summary, we recommend not viewing the agent as a universal entity with
all tools and knowledge, but rather as a collaborative ensemble with distinct
roles and clear boundaries. Tool invocation should not be seen as a single
agent’s function, but as explicit collaboration and interaction among different
agents.

Such a strategy of clear division of responsibility and functional decoupling
is not only suited for intelligent system architecture in engineering, but also
provides useful guidance for real-world team management and organizational
practice. Clear role boundaries and specialization help to avoid inefficiency and
lack of execution that arise from ambiguous role definitions.

4 Future Directions

4.1 Continuous Iteration of the AutoGen Platform to Over-
come Technical Bottlenecks

A primary objective for future research is the continuous iteration and optimiza-
tion of cutting-edge platforms such as AutoGen. Particular attention should be
paid to optimizing core technical bottlenecks identified in user experience re-
ports, including resource consumption, context management, and the efficiency
of multi-turn interactions. By further refining the underlying architecture, and
improving agent-level parallel scheduling and memory management strategies, it
is possible to significantly enhance both user interaction experience and overall
system performance.

4.2 In-depth Study of Agent Role Allocation to Improve
Resource Efficiency

Through more granular analysis of task requirements, we recommend imple-
menting precise agent role allocation and task integration, thereby maximizing
platform resource utilization. Specific measures include:

e For tasks of moderate complexity, partially merging agents or stages and
employing a hybrid model that combines multi-agent and single-chain rea-
soning (CoT) can effectively control resource consumption.

e By leveraging the concepts developed above, system prompts (System
Messages) should be streamlined and optimized based on knowledge bound-
aries and focus, retaining only the information essential for core tasks.
This substantially reduces context redundancy.
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e In multi-agent collaboration workflows, continuous optimization of context
summarization and vectorization (embedding) mechanisms is crucial for
compressing and refining information transfer, thus lowering overall token
consumption. Such strategies are vital for supporting the efficiency and
scalability of large-scale multi-agent systems in real-world applications
[39, 3].

4.3 Exploring Dynamic Knowledge Boundary Adjustment
to Enhance System Reliability

Given diverse task scenarios and evolving knowledge requirements, it is essen-
tial to further explore and implement mechanisms for dynamically adjusting
agent knowledge boundaries. Such mechanisms are key for mitigating hallu-
cinations and logical contradictions. While expert-agent frameworks remain
underdeveloped, promoting the co-evolution of toolchains and knowledge bases
is critical—including advances in knowledge visualization, editability, and fine-
grained management. These improvements enable more precise and controllable
knowledge expression, reasoning, and task execution, ultimately enhancing over-
all system reliability and practical utility.

For example, although the human-in-the-loop paradigm is already well sup-
ported in AutoGen and has shown considerable potential, practical deployment
still faces challenges such as reducing the cost of human intervention. In the
future, as knowledge boundaries become clearer, it is expected that better de-
lineation between automated and human-in-the-loop processes will help address
these issues more effectively.

5 Conclusion

This study envisions the development of the AutoGen platform at an operating-
system (OS) level, and, based on its open-source and extensible technological
path, systematically proposes a novel taxonomy for agent classification. Us-
ing this classification framework, we identify and clarify several critical issues
currently present in the platform and suggest corresponding optimization path-
ways. Furthermore, this research offers a preliminary exploration into leveraging
knowledge editing and dynamic adjustment mechanisms to extend the capabili-
ties of expert agents, providing valuable theoretical references for future studies.

It is important to note that as a highly open and extensible engineering
project, the potential of AutoGen goes far beyond the aspects discussed in this
work. Due to constraints of space and personal research scope, only selected
core mechanisms and representative scenarios are analyzed here, and it is not
possible to cover all related technical details and application domains. The
functional boundaries and ecosystem of the AutoGen platform are still evolving
rapidly, and many topics worthy of further investigation remain insufficiently
explored. Therefore, this work is intended to serve as a catalyst, providing
theoretical guidance and practical insights for subsequent researchers in the
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field, and to foster the continued development and innovation of AutoGen and
its multi-agent systems.
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Experience Report A: Analysis of Existing Issues
in AutoGen

1. The Pseudo One-shot Problem (See Appendix H for
Detailed Analysis)

The current design of AutoGen does not allow a single Agent to simultaneously
perform tool invocation and knowledge expression within a single turn, thus
failing to achieve true “One-shot” (single-turn response) capability.

Even when reflect_on_tool_use=True helps to conceal the intermediate
output process of tool results, from the system execution perspective, two model
calls and one function execution are still required. This implies:

¢ Unavoidable performance jitter: The response latency ¢ for tool calls
can fluctuate significantly (e.g., in the case of network requests or database
queries), resulting in brief periods where the user interface appears unre-
sponsive and lacks progress feedback. This extends the perceived wait
time and makes the experience feel sluggish.

e Complex exception handling: If a tool call fails or times out, the
model may attempt re-reasoning, but the output may remain incomplete
or not meet user expectations, as the framework does not automatically
retry failed calls. This logic split can manifest at the UI layer as “the API
seems stuck but the model is still thinking”, weakening user trust.

Additionally, in complex tasks, the model may need to invoke multiple
tools—for example, making API requests and database queries simultaneously.
While AutoGen’s default mechanism supports both parallel and sequential tool
calls (parallel_tool_calls), it lacks explicit dependency and order manage-
ment: it cannot guarantee execution order or require one tool’s success before
another is called.

2. Issues with Execution Efficiency and Parallel Optimiza-
tion

Although AutoGen is conceptually designed as an “operating system” for multi-
Agent parallel interactions, there remain significant practical limitations, par-
ticularly in parallel execution and context management:

e Insufficient parallel execution efficiency: While AutoGen claims sup-
port for “parallel” Agents via mechanisms like GraphFlow, empirical tests
indicate that, regardless of whether multithreading or asynchronous corou-
tines are used, the underlying implementation often remains sequential.
Genuine performance gains from parallel responses are limited. Thus, Au-
toGen currently relies more on context chaining between heterogeneous
Agents than on decomposing tasks into parallel sub-tasks executed by
homogeneous Agents, which is typical of modern OS designs.
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e Lack of effective historical context management: Currently, Au-
toGen lacks built-in context compression or efficient history management
mechanisms. As the number of dialogue turns increases, historical mes-
sages accumulate, causing locally deployed or small-scale models to expe-
rience significant inference slowdown in long conversations. According to
feedback from developers on Reddit, inference speed drops noticeably after
many turns, and users must manually trim conversation history, severely
impacting practical usability and convenience.

Due to these two limitations, we believe that, although AutoGen has estab-
lished the rudimentary architecture of an “Agent Operating System”, it still
falls short of matching the precise context separation and high-degree paral-
lel control achieved by modern computer operating systems in terms of actual
functionality and performance.

In summary, at this stage, the AutoGen framework is more akin to a feature
preview or partial development version, suitable for basic function demonstra-
tions and small-scale applications. For future development, if AutoGen is to
become a true productivity tool, it must draw on the engineering practices of
modern operating system design by further strengthening its parallel response
mechanisms and context management. This will be essential to improving Auto-
Gen’s practical performance and user experience in complex task environments.
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Experience Report B: Challenges in the Field

1. Resource and Cost Bottlenecks

Currently, multi-agent architectures represented by AutoGen face significant
challenges in terms of resource consumption and cost control. Compared to ap-
proaches based on a single LLM output or traditional Chain-of-Thought (CoT)
reasoning, multi-agent systems incur markedly higher token consumption and
API call frequency. The primary reasons for this are as follows:

Repeated system prompts: Each Agent is required to carry its specific
role-defining system message in every dialogue turn, which significantly increases
the length of the prompt per turn and thus directly drives up overall token usage.

Redundant accumulation of conversational history: To ensure conti-
nuity and accuracy of dialogue, the system typically transmits the entire history
as part of each interaction. As the number of turns grows, token consumption
increases exponentially.

Multiple network API calls: In typical multi-agent collaboration work-
flows, two to three or more Agents are often involved, with each response neces-
sitating a separate model inference and network call. In contrast, conventional
CoT methods generally complete the entire task with a single end-to-end infer-
ence.

Context transfer overhead due to frequent role switching: Frequent
switching of roles among Agents requires the system to repeatedly embed each
Agent’s latest reply and key information into the next input, further exacerbat-
ing the context inflation problem.

The above factors collectively lead to a substantial increase in overall rea-
soning costs, which severely restricts the scalability of multi-agent systems in
resource-constrained or cost-sensitive application scenarios.

2. Challenges of Hallucination and Logical Consistency

Although multi-agent architectures, in theory, can leverage role-based mutual
constraints to reduce the “hallucination” phenomenon of LLMs compared to
single-chain CoT reasoning, this mechanism can only mitigate, rather than fun-
damentally eliminate, hallucinations at a probabilistic level. The specific chal-
lenges manifest as follows:

Echoing bias: Multiple Agents in the system often rely on identical or
highly similar system prompts and shared information sources for reasoning
and judgment. If the initial input contains errors, these Agents tend to reinforce
each other’s outputs, making error correction difficult and even amplifying the
original mistake. Therefore, the design of multi-agent systems should emphasize
the independence and heterogeneity of information sources to avoid the chain
propagation and database contamination resulting from initial misinformation.

Lack of critical capacity due to role specialization: In current multi-
agent collaboration paradigms, execution-oriented or tool-oriented Agents pri-
marily focus on the concrete execution of low-level tasks and typically lack
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high-level semantic understanding or logical consistency checking of the overall
task. As a result, potential logical errors or reasoning biases are difficult to
detect and correct in a timely manner. To address this, it is advisable to intro-
duce dedicated Critic or Validator Agents to independently assess the logical
soundness and consistency of system outputs, thereby significantly enhancing
the robustness and reliability of the overall system.
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Appendix A: Detailed Architecture and Module
Overview of the AutoGen Framework

The AutoGen framework consists of the core Python modules autogen-core,
autogen-agentchat, and autogen-ext, along with auxiliary tool modules such
as autogen-studio and agbench. Specifically:

e autogen-core provides fundamental communication interfaces and asyn-
chronous scheduling logic;

e autogen-agentchat implements message exchange and task flow defini-
tions between Agents;

e autogen-ext is used for extending external models and tools.

Among the auxiliary tools, autogen-studio offers a web-based visual inter-
action interface running locally, while agbench provides performance evaluation
features, including average dialogue turns (average_turns), success rate (suc-
cess_rate), average response time (avg_response_time), and accuracy (accuracy).

Module

File Path Function Description
Name

autogen/python/p
Core API | ackages/autogen-
core/

Interface definitions + minimal implementation: related to
single agents, provides state context, message mechanisms, etc.

AgentChat au‘t pEcnyiony — . . .
ack - | Imy interfaces for multi-agent collaboration.
API :
agentchat/
Extensions hat | Impl interfaces for integrating external APIs, including
API /contrib/ tools and models.

Figure 7: AutoGen module and component overview.
The platform also supports cross-language integration based on Protocol

Buffers (proto), allowing deployment and integration with languages such as
C+#/.NET and enabling seamless multi-language system architectures.
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Appendix B: Version Evolution from AutoGen
v0.2 to v0.4

The main release dates for AutoGen versions are: v0.2 (November 2023) and
v0.4 (January 2025). Compared to v0.2, v0.4 underwent major architectural
refactoring, with a particular focus on asynchronous scheduling mechanisms
and strict interface specifications. Through layered design and enhanced de-
veloper tool support, v0.4 enables deep customization, while the independent
pyautogen package encapsulates v0.4 functionality with a simplified interface,
providing a smooth transition for beginners and rapid prototyping with back-
ward compatibility for v0.2.

Version v0.2 focused on achieving “conversational programming” via natu-
ral language prompt orchestration, whereas v0.4 emphasizes standardized inter-
face definitions and code-level dynamic control. This shift marks a deep evo-
lution from prompt-based to code-based control, greatly enhancing the frame-
work’s flexibility and scalability and making it more suitable for industrial-grade
applications—albeit at the cost of a steeper learning curve for new users. To
address this, the former Microsoft AutoGen team developed the standalone
pyautogen package, which offers a classic interface to help beginners and pro-
totype developers migrate smoothly to the new architecture.
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Appendix C: Details of AutoGen’s Compatibility
with External Platform Ecosystems

AutoGen exhibits a high degree of ecosystem openness, enabling direct compati-
bility with multiple platforms such as AutoGPT, the LangChain toolchain, and
LCEL expressions, while also supporting seamless integration with resources
from CAMEL and Microsoft Semantic Kernel. The open interface design not
only consolidates resources and avoids redundant feature stacking, but also
greatly reduces the barrier for developers to integrate external tools, thereby
significantly improving rapid deployment capabilities in complex business sce-
narios. This flexibility allows developers to implement highly customized ap-
plication requirements without the need to deeply modify the core framework
code. The main interface invocation modes are as follows:

Platform Example Invocation Method
CAMEL Role Assignment Agent based on role configuration (see Appendix G)
LangChain Direct invocation of predefined toolchains (e.g., retrieval, translation tools)

LangChain LCEL Defining toolchain processes with LCEL expressions for complex tool composition

Table 1: Examples of AutoGen compatibility and invocation methods with
external platforms.
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Appendix D: Built-in Practical Agent Types in
AutoGen (with Comparison to CAMEL)

Table 2: AutoGen Built-in Agent Types and Application Scenarios

AutoGen Agent Class

Functionality and Application Scenarios

AssistantAgent
UserProxyAgent

CodeExecutorAgent
MessageFilter Agent

SocietyOfMind Agent

Basic LLM Agent for content generation and tool invocation.
Simulates a human user, supporting manual input or automated
process control.

Multi-language code execution; supports automated code running
and feedback.

Message filtering to block inappropriate content, ensuring safety
and efficiency in multi-agent collaboration.

Multi-sub-agent collaboration; simulates a “Society of Mind”
structure for complex decision making.

Table 3: CAMEL Built-in Agent Types and Application Scenarios

CAMEL Agent Class

Functionality and Application Scenarios

ChatAgent
RolePlayingAgent
CriticAgent

TaskAgent
KnowledgeGraphAgent

DeductiveReasoner Agent
MultiHopGeneratorAgent

SearchAgent
Embodied Agent

General-purpose conversational agent; supports role-playing,
memory, multi-model backends, and asynchronous operation.
Multi-role playing agent, commonly used for collaboration or
game-theoretic simulation.

Evaluates outputs of other agents, providing feedback and quality
control.

Task decomposition and subtask scheduling, supports automatic
breakdown of complex tasks.

Structured knowledge reasoning and retrieval, suitable for tasks
requiring knowledge graph reasoning.

Complex logical reasoning and stepwise problem-solving.
Multi-hop reasoning, generating complex conclusions and inter-
mediate reasoning steps.

Information retrieval across multiple data sources.

Designed for tasks in the physical/embodied world, suitable for
simulation and context-aware applications.
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Appendix E: Officially Recommended Multi-Agent
Configuration Strategies in AutoGen

Table 4: Typical Multi-Agent Configuration Strategies in AutoGen

Application Scenario

Typical Agent Configu-
ration

Description

Mathematical reasoning tasks

Long-text retrieval and QA

Action decision tasks

Code generation and repair

Free-form dialogue simulation

Decision execution tasks

AssistantAgent (reason-
ing) + UserProxyAgent
(human-in-the-loop)
UserProxyAgent (initiator)
+ AssistantAgent (search/-
tool invocation)

Planner + Controller

AssistantAgent (code gen-
eration) + UserProxyAgent
(execution/feedback)
RoundRobinGroupChat
(multi-role dynamic discus-
sion)

Decision Agent + Execu-
tion Agent

Humans can intervene at any
time; the LLM handles reasoning,
improving accuracy.

The user asks questions; the agent
automatically searches resources
and generates answers.

Planner is responsible for goal de-
composition and planning; Con-
troller executes actions.

The agent generates code;
UserProxyAgent executes
code and provides feedback.
Multiple roles take turns speak-
ing, simulating free dialogue and
multi-perspective debates.

One agent is responsible for
decision-making, another for con-
crete execution.

the
the
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Appendix F: Macro Scheduling and Micro Exe-
cution Mechanisms in AutoGen

AutoGen provides a decoupled mechanism for macro-level scheduling and micro-
level execution. At the macro level, the framework uses the GroupChat container
to centrally manage the speaking order and termination conditions for multiple
agents. GroupChat supports common scheduling modes such as round robin,
where each agent takes turns to speak in a fixed sequence until a termination
condition is met. You can also customize the speaking order or termination
logic to accommodate more complex business needs. Below is a simple example
of round robin scheduling:

Listing 1: Key steps for round robin scheduling in AutoGen

from autogen.agentchat import GroupChat,
AssistantAgent, UserProxyAgent, GroupChatManager

assistant = AssistantAgent(name="assistant”,
llm_config=False)
user = UserProxyAgent(name="user”)

groupchat = GroupChat(
agents=[user, assistant],
max_round=3
)
manager = GroupChatManager (groupchat=groupchat)
reply = manager.run(message="...”, sender=user)

print(reply)

In this example, GroupChatManager automatically uses the round robin
strategy to let the user and assistant take turns speaking, so the developer
does not need to manually manage the speaking order.

At the micro level, each agent can flexibly process message content and in-
voke tools by registering callback functions (e.g., register_for_11m message).
For example:

Listing 2: Custom callback registration (simplified)

@assistant.register_for_llm_message
def custom_on_message(message, sender, config):
if "Hello” in message[”’content”]:
return ”Hello!-...”

This design allows novice users to quickly start multi-agent collaboration
processes with simple configuration, while advanced users can implement deeper
customization through custom callbacks and scheduling strategies, balancing
ease of use and flexibility.
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Appendix G: Implementation and Application of
Different Agent Types in AutoGen

Both AutoGen and CAMEL support one-shot definitions (see the later One-shot
section), but there are significant differences in platform design focus. CAMEL
places greater emphasis on knowledge and context setup, making tool integra-
tion relatively complex; in contrast, AutoGen features native API tool inte-
gration, greatly lowering the barrier for extension. AutoGen’s highlight is its
“conversational programming” paradigm, enabling efficient control of complex
tasks through dialogue flows.

This appendix provides a practical overview of the three core types of Agents
supported by AutoGen, including their configuration and mechanisms.

1. Tool-driven Agent

AutoGen provides very convenient support for tool-driven agents, especially for
scenarios involving third-party APIs or custom functions.
Implementation process:

1. Encapsulate the tool interface as a Python function;
2. Wrap it with FunctionTool and add a description;

3. Instantiate an AssistantAgent, passing the tool list via the tools pa-
rameter.

Example: Integrating the quotable.io API to fetch quotes

def random_quote(tag: str = "technology”) —> str:

quote_tool = FunctionTool(
random_quote,
description=""Fetch-an-English-quote-for-a-specified-topic”
)
assistant = AssistantAgent(
name="Quoter”,
tools=[quote_tool]

In the current version, AssistantAgent is the only built-in agent type with
native tool-calling support.
Advantages of tool registration:

e Implementation is straightforward and highly extensible;
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2. Role-driven Agent

In AutoGen, the core idea behind role-driven agents is to dynamically con-
strain the agent’s behavioral scope and knowledge performance—without di-
rectly modifying the model’s internal knowledge—through prompt engineering
and conversational programming. AutoGen primarily employs the following
mechanisms:

System message (prompt): By crafting a detailed system message (agent
prompt), the agent’s knowledge domain and behavioral patterns are constrained,
and processes or rules can be embedded within the prompt itself.

Conversation flow and control logic (conversational programming):
Using the on_messages() Ekallback interface, developers can flexibly control
message handling, event triggering, tool invocation, and multi-turn dialogue
logic, thereby dynamically adjusting the agent’s operational boundaries.

Core advantages:

e Clear separation of concerns: “what to do when” is defined by the dialogue
flow, “how to do it” is handled by explicit code or external tools;

e More intelligent than traditional regex-based triggers, but still supports
regex/keyword triggers (e.g., TERMINATE);

e Agent autonomy and context passing improves the engineering and reusabil-
ity of reasoning flows;

e Supports dynamic next-speaker selection, context trimming and passing,
and precise domain definition (e.g., legal, medical), approaching expert-
level agent performance.

Comparison with traditional approaches:

Traditional frameworks such as LangChain can only specify “who
does what and when,” whereas AutoGen supports models that can
autonomously pose questions and dynamically pass topics, making
it more general, robust, and engineer-friendly.

IVersion Note (0.2 — 0.4): In version 0.2, agent message responses mainly relied on the
generate_reply () method, with each call triggering a model inference or function execution.
Developers would choose between auto-reply (auto-generating a reply for each message) and
manual process control via the human_input_mode parameter.

Starting from version 0.4, this mechanism has been replaced by dynamic message processing
via on_messages(), where developers can flexibly set conditions to skip, invoke, or perform
multiple rounds of model processing within the same method. Meanwhile, the role of the
system message has reverted to traditional prompt engineering, serving mainly to specify the
model’s identity, style, and knowledge domain as static context. The main carrier of conver-
sational programming has shifted from prompt-based flows (as stressed in early papers) to the
programmable on_messages() interface, enabling more sophisticated process customization
and interaction choreography.

While simple dialog control logic can still be guided via system message/prompt in AutoGen,
since version 0.4, the officially recommended and widely supported method is code-based
control flow via on_messages() callbacks. This approach—using programming techniques to
manage conditions, branches, loops, etc.—greatly improves the scalability and reliability of
multi-agent systems. As a result, “controlling via natural language dialogue” is no longer the
mainstream paradigm, but rather an initial constraint or supplementary guideline.
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Limitations:
e Still limited by the model’s own knowledge blind spots and hallucinations;

e Difficult to achieve truly fine-grained and precise knowledge control; cur-
rently remains a “soft constraint.”

3. Role-playing Agent

If high precision on specific knowledge is not required and only CAMEL-style
role-play and interaction are needed, you can directly use CAMEL’s RolePlaying
API to generate role definitions, and use the generated role names and system
messages for AutoGen instantiation:

from camel.societies import RolePlaying

task_prompt = ”Design-an-engaging-three—day-itinerary-for-first—time-
visitors-to-Berlin.”
role_play = RolePlaying(
assistant_role_name=""Travel-Planner”,
user_role_name=""Traveler”,
task_prompt=task_prompt,
with_task_specify=False,

)

assistant = Assistant Agent(
name="travel_planner”
system_message=role_play.assistant_sys_msg,

)

traveler = AssistantAgent(
name="traveler”
system_message=role_play.user_sys_msg,
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Appendix H: The “Pseudo One-shot” Mode of
AutoGen

In practical applications, it has been observed that even with guidance via sys-
tem message, tool-driven agents generally require at least two rounds of dialogue
to link tool invocation and natural language generation:

1. First round: The agent plans (Planning) based on the system message
and issues a FunctionCall (e.g., calls random_quote).

2. Tool execution: The framework executes the corresponding function,
returning a FunctionExecutionResult (Observation).

3. Second round: The agent reasons over the tool result and generates a
natural language response (Responding).

Official documentation states:

e The AssistantAgent by default performs at most one tool-call itera-
tion; if reflect_on_tool_use=False, it directly returns the tool result
(ToolCallSummaryMessage), i.e., the tool result is not further processed
by the model for reflection or NLG.

e If reflect_on tool use=True, the framework automatically triggers a
second inference, allowing the model to generate a natural language output
based on the tool result, returning the final answer.

Overall, AutoGen’s tool-calling tasks strictly follow a “Planning — Ac-
tion — Observation — Response” multi-step process and require at least two
rounds of dialogue, not supporting true single-round completion. Even with
reflect_on_tool use=True, the second inference is only encapsulated within
the system, resulting in a “pseudo one-shot” experience for the user—in reality,
two model inferences are still performed.
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