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Abstract

The first part of this paper focuses on summarizing the development of
Shapley Value in the context of explainable artificial intelligence (XAI),
both in terms of its practical applications and historical evolution. It
provides a comprehensive overview of the "all about Shapley Value" story
in XAI.

The second part of this paper shifts its focus to integrating Shapley
Value with causal graph theory, leading to the derivation of the do-Shapley
method, which is applied innovatively to a simple pruning example. By
preserving the core principles of fairness and consistency inherent in Shap-
ley Value, this method leverages interventional causal inference to achieve
precise quantification of causal contributions in high-dimensional feature
spaces.

Through a pruning strategy based on reasonable thresholds, the ap-
proach not only enhances the readability of causal graphs but also effec-
tively reduces computational complexity while maintaining the fairness of
feature importance distribution. These characteristics make the method
well-suited for a variety of complex systems and scenarios in XAI, extend-
ing the traditional Shapley Value’s applicability to contexts with signifi-
cant dependency and causal interactions.

1 Background: The Implementation of Shapley
Analysis in XAI

1.1 Why XAI Needs Shapley Value
In the field of explainable artificial intelligence (XAI), the importance of Shap-
ley Value lies primarily in its fairness and consistency when measuring feature
contributions (these two properties will be detailed at the end of the paragraph).

Shapley Value originates from cooperative game theory, where it was initially
used to measure the payoffs allocated to each beneficiary. Over time, this same
methodology has been directly applied to measure the contribution of each par-
ticipant to the overall outcome—referred to as feature contribution allocation.
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This makes Shapley Value a reliable "measurement of contribution," which is
also the focal point of this paper.

Example 1: Consider a decision-making process where a resolution is passed
if at least two voters agree. Let N = {A,B,C} represent three voters, and S
denote a coalition supporting the resolution (e.g., if both A and B support, then
S = {A,B}). The decision rule can be expressed as:

v(S) =

{
1 if |S| ≥ 2

0 if |S| < 2

To quantify the contribution of voter A to the outcome v(S), we list A’s marginal
contributions and their weights:

S v(S) v(S ∪ {A}) v(S ∪ {A})− v(S)
∅ 0 0 0

{B} 0 1 1
{C} 0 1 1

{B,C} 1 1 0

S |S| Weight: |S|!·(|N |−|S|−1)!
|N |!

∅ 0 0!·2!
3! = 2

6

{B} 1 1!·1!
3! = 1

6

{C} 1 1!·1!
3! = 1

6

{B,C} 2 2!·0!
3! = 2

6

The "measurement of contribution" for voter A, denoted as ϕA(v), is calcu-
lated by multiplying marginal contributions with their respective weights and
summing them:

ϕA(v) =
∑

S⊆N\{A}

Weight × Marginal Contribution

ϕA(v) =
2

6
· 0 + 1

6
· 1 + 1

6
· 1 + 2

6
· 0 =

2

6
=

1

3
.

For B and C, due to the symmetry of the voting system, the results are
identical. Each voter contributes 1

3 to the overall decision.
This calculation demonstrates that Shapley Value, as defined, provides a

robust representation of contributions. It aligns well with our expectations
for an ideal "measurement of contribution" in similar or even more complex
scenarios.

Axiomatic Properties: From this example, we outline the conditions under
which Shapley Value operates:

• Additivity/Linearity: ϕi(v1 + v2) = ϕi(v1) + ϕi(v2)
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• Symmetry: ϕi(v) = ϕj(v), if v(S∪{i})−v(S) = v(S∪{j})−v(S), ∀S.

• Null Player Property: ϕi(v) = 0, if v(S ∪ {i}) = v(S), ∀S ⊆ N.

• Efficiency: ϕA(v) + ϕB(v) + ϕC(v) =
1
3 + 1

3 + 1
3 = 1.

These properties not only encompass the example above but also apply to
scenarios with larger numbers of participants or weighted voting systems, such
as network bandwidth allocation or profit sharing. Regardless of scale, Shapley
Value can quantify each party’s contribution through the same computation
method.

More broadly, these properties serve as the axiomatic foundation of Shapley
Value, as defined in:

• Rozemberczki, B., Watson, L., Bayer, P., Yang, H.T., Kiss, O., Nilsson,
S., and Sarkar, R. (2022). The Shapley Value in Machine Learning. arXiv
preprint arXiv:2202.05594.

• Aumann, R.J., and Shapley, L.S. (1974). Values of Non-Atomic Games.
Princeton University Press.

Applications in Machine Learning: Through the constraints and axioms
outlined above, Shapley Value has been successfully introduced into machine
learning to provide a unified method for measuring feature contributions across
various tasks (e.g., regression, classification, and deep learning models). By
defining the scope of applicability, the guarantees of "fairness" and "consistency"
are evident through logical derivation:

• Fairness: Symmetry and the null player property ensure that "equal
contributors" receive equal values and "non-contributors" are assigned a
value of zero.

• Consistency: The additivity principle ensures that if a feature con-
tributes more in all subsets, it is assigned a higher Shapley Value.

These properties establish Shapley Value as a method for feature importance
measurement that is both fair and consistent, providing an objective and repro-
ducible interpretability metric. This, in turn, strengthens model transparency
and result trustworthiness.

1.2 Shapley Value for Understanding Complex Systems
and Its Improvements in Ensemble Networks and Fed-
erated Networks

Although the theoretical foundation of Shapley Value assumes linear additivity
of feature contributions, it remains capable of providing stable feature impor-
tance estimates in nonlinear systems through approximation methods such as
local linearization and weighted sampling. Particularly in ensemble networks
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and federated networks, these local approximations ensure its adaptability in
high-dimensional scenarios. The use of Shapley Value in these contexts brings
the following benefits:

• Theoretical Robustness Leading to Practical Generality: Shapley
Value provides a standardized, axiom-based mathematical method. Even
in complex systems where nonlinearities or high-dimensional interactions
cannot be fully captured, it still offers a globally interpretable perspective
on feature contributions. It does not rely on explicit model assumptions
or structural requirements, making it applicable to most machine learning
models or game-theoretic environments.

• Approximation Advantages: While Shapley Value only provides ap-
proximations, these approximations highlight key feature importance, of-
fering a practical layer of interpretability for systems. In many real-world
applications, such approximate explanations are sufficient to identify crit-
ical drivers in the system. For example, in ensemble networks, the SHAP
method employs sampling and local linear approximations to identify ma-
jor features accurately while reducing computational complexity.

Thus, when assessing the importance of individual features to overall system
decisions, Shapley Value serves as a measurement tool that balances collabora-
tion and fair allocation, solidifying its position in both industry and academia.

Given the high-dimensional, dynamic, and cross-model characteristics of en-
semble networks and federated networks in industrial and academic applications,
researchers have optimized various algorithms to enhance the usability and per-
formance of Shapley Value in these domains. Among the most representative
approaches is SHAP (SHapley Additive exPlanations).

SHAP reduces the computational cost of full cooperative game calcula-
tions on large-scale, high-dimensional data by approximating feature impor-
tance through local approximations. It employs linearization and approximation
strategies, such as assuming local additivity or sampling marginal contributions,
to accelerate the explanation process.

Additionally, in federated networks, where data is distributed and subject
to privacy constraints, researchers have proposed Shapley Value approximation
methods based on secure multi-party computation or cryptographic techniques.
These methods enable secure and accurate feature importance evaluation across
nodes.

As a result, with improvements and optimizations tailored to specific domain
requirements, Shapley Value is gradually becoming a core tool that combines
rigor and scalability in the interpretability and usability of complex systems.

1.3 Shapley Values Are Widely Used in XAI
1.3.1 How the SHAP Family Performs Well

In recent years, the SHAP methodology, designed to reduce computational com-
plexity, has demonstrated outstanding interpretability and stability across vari-
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ous applications, including deep learning models, tree models, and hybrid mod-
els. Due to the SHAP family’s ability to provide intuitive explanations for
both local and global model decisions based on the properties of Shapley Value,
it has proven to be portable and highly accurate across different models and
data scales. This has led to its widespread adoption in high-risk or high-value
domains, such as medical diagnosis, financial risk management, and public ser-
vice evaluation, with substantial testing and deployment by numerous research
groups.

For example, KernelSHAP effectively reduces computational complexity in
high-dimensional data scenarios through random sampling of feature subsets
and linear regression fitting. TreeSHAP, on the other hand, leverages path in-
formation from decision tree structures to compute SHAP values quickly and
accurately within tree models. These optimization techniques significantly en-
hance the scalability of Shapley Value in complex systems.

Table 1: Comparison of SHAP Methods
Method Key Idea Applicable Models Main Advantages Main Limitations Computational Complexity
KernelSHAP Approximates contributions via linear regression on sampled subsets General black-box models - High generality; explains any model

- Retains Shapley Value guarantees - Computationally expensive for high-dimensional data Depends on number of samples
TreeSHAP Uses tree split paths to compute contributions Tree models (e.g., XGBoost, Random Forest) - Fast and scalable for large datasets

- Exact SHAP values for tree models - Limited to tree models Typically logarithmic, O(T × L) (where T is number of trees, L is max depth)
DeepSHAP Leverages gradients and backpropagation for layered explanation Neural networks (CNN, RNN, MLP, etc.) - Optimized for neural network structures

- Efficient computation of approximate SHAP values - Sensitive to architecture and regularization Depends on network structure and sampling strategy
GradientSHAP Uses random interpolation and gradients for integral approximation General differentiable models - Well-suited for differentiable models

- Mitigates extreme sensitivity via random interpolation - High variance without extensive sampling Depends on sampling size and network scale
PartitionSHAP Clusters features based on dependencies for local contribution General black-box models - Reduces dimensionality through clustering

- Retains theoretical consistency - Dependent on accurate dependency relationships Depends on clustering and sampling strategy

References: WANG, Zhaohua, LIU, Jie, WANG, Bo, DENG, Nana, NIE,
Fuhua. Research on mining and applications of individual heterogeneity factors
in resident demand response by integrating machine learning and SHAP value
algorithm. Systems Engineering - Theory & Practice, 2024, 44(7): 2247-2259.
(https://doi.org/10.12011/SETP2023-0677).

2 Shapley Value

2.1 Mathematical Basis and Transferable Utility (TU) Set-
ting

Under the framework defined by the four core axioms mentioned earlier, the total
contribution can be entirely redistributed as individual contributions. Partici-
pants’ contributions can be freely transferred among them without affecting the
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total contribution. This assumed game setting is referred to as a Transferable
Utility (TU) cooperative game.

Reference: The Shapley Value in Machine Learning. The original text uses
the general term "collective value" to describe the total value of a coalition,
referring to profit or cost. In the context of Shapley Value, this total value is
reinterpreted as the fundamental metric for marginal contribution allocation.

Thus, the Shapley Value defined above can be more accurately categorized
in the XAI framework as a "measurement of marginal contribution" method.
While previous sections introduced several practical applications using local ap-
proximations and algorithmic optimizations, the mathematical rules underlying
Shapley Value reveal inherent limitations in adapting to complex XAI systems,
particularly in scenarios with high feature dependency or causal interactions.

Illustrative Example: Consider a simple XAI scenario: suppose three fea-
tures {X1, X2, X3} are used for binary classification. If {X1, X2} exhibit strong
multicollinearity or potential causal links in the training data, the SHAP method
based on the TU setting (which assumes that each feature independently con-
tributes marginal increments to the model output) may result in misattribution
or redundant measurement of {X1, X2}’s individual contributions. Conversely,
incorporating more refined conditional distributions or causal structures could
address such issues but imposes higher demands on data collection and model-
ing, while also making the explanation process significantly more complex.

This raises a core question: in practical applications, how can one balance
"operability" and "explanatory precision"? For scenarios with a small number of
features and relatively reasonable independence assumptions, marginalization-
based explanation methods have clear advantages. However, when faced with
complex dependency structures or genuine causal mechanisms, relying solely
on simple marginal settings to achieve Shapley allocation becomes inadequate.
In such cases, more flexible and sophisticated models are required to capture
nonlinear interactions among features and deliver more credible explanations.

Beyond Marginal Contributions: In these situations, the contributions of
certain players (or features) are no longer purely "marginal increments" but in-
clude inseparable synergistic effects or nonlinear interactions. For example, the
inclusion of player X1 might trigger cooperative changes or nonlinear benefits
with X2, exceeding the scope of "marginal contribution" as defined by Shap-
ley Value. This limitation undermines the explanatory capability of existing
methods.

To mathematically adapt to such scenarios, adjustments to the axiomatic
framework may be necessary (e.g., considering conditional distributions or em-
bedding causal assumptions). Alternatively, more advanced correction mecha-
nisms, such as conditional Shapley Value, can be introduced to account for the
effects of non-marginal contributions.
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2.2 Both TU Setting and Other Settings Work in XAI
The SHAP methodologies mentioned earlier succeed in applying Shapley Value
to complex systems through local approximations and substitutions that adhere
to the axioms outlined previously. Another approach, however, focuses on im-
proving Shapley Value mathematically, paving the way for its integration into
the next generation of XAI systems equipped with precise descriptive capabili-
ties.

2.3 Significant Advantages in Simple Cases, but Challenges
Persist with Dependency and Real Causality

While the SHAP methodologies demonstrate significant advantages in simple
cases, they face inherent uncertainties and biases when applied to scenarios with
strongly dependent features or genuine causal relationships. Treating unselected
features as random or independent in these contexts can lead to inaccuracies.

Driven by the demands of XAI scenarios, there is a growing need to develop a
more precise version of Shapley Value capable of capturing causal relationships.
This advancement would enable Shapley Value to better adapt to the challenges
posed by dependency structures and causal mechanisms in complex systems.

3 Do-Shapley

3.1 Extending Shapley Value to Account for Dependency
and Causality

The evolution of Shapley Value in cooperative game theory and explainable ar-
tificial intelligence (XAI) reflects a progression from emphasizing external coali-
tions and productive components to integrating causal inference frameworks.

Conditional Shapley Value: One of the earliest extensions, Conditional
Shapley Value, introduces conditional distributions when calculating feature
contributions. Unlike the classical Shapley Value, which assumes feature in-
dependence, Conditional Shapley Value addresses the problem of misleading
interpretations caused by statistical dependencies among features. Its advan-
tage lies in more accurately reflecting the roles of features in real-world data.
However, Conditional Shapley Value presents challenges in practical application:

• High Data Requirements: Accurately estimating conditional distribu-
tions requires a large number of data samples. As the number of features
increases, the computation and data demands grow exponentially.

• Estimation Errors: Conditional distributions are often approximated
using limited samples in practice. Inaccurate estimates can lead to biased
Conditional Shapley Value calculations.
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• High-Dimensional Problems: As the number of features increases,
conditional distributions become increasingly complex. The curse of di-
mensionality renders Conditional Shapley Value computation infeasible in
such cases.

Early research on Conditional Shapley Value and its axiomatization includes
works by von Neumann and Morgenstern (1944) and Maschler (1992).

Limitations of Conditional Shapley Value: While Conditional Shapley
Value handles statistical dependencies, it is fundamentally correlation-based
and lacks the ability to distinguish causal relationships. In certain applications,
such as model interpretability or economic analysis, this limitation can lead to
misjudgments about feature importance, as statistical correlation may obscure
true causal relationships.

Causal Shapley Value: With the maturation of causal inference methods
(e.g., Causal Shapley Value), researchers increasingly favor directly modeling
causal relationships instead of relying solely on correlations. This shift marks a
gradual decline in the prominence of Conditional Shapley Value. Causal infer-
ence, deeply rooted in philosophical inquiry, has become a mainstream branch
of contemporary knowledge science.

As modeling tools like causal graphs have matured, researchers have inte-
grated them with Shapley Value to more accurately identify the true contribu-
tions of features to model outputs and to differentiate between direct and indi-
rect effects. Specifically, Shapley Value is introduced as the final step in causal
inference to quantify causal effects, giving rise to **Causal Shapley Value**.

Causal Inference Workflow: Causal Shapley Value should not be seen as
merely a mathematical modification but should be understood as part of the
complete causal inference workflow, which typically includes:

1. Constructing a causal graph,

2. Identifying causal effects,

3. Estimating causal effects.

During the causal effect estimation phase, Shapley Value’s principle of fair
allocation is applied within the causal framework. By distinguishing between
direct and indirect effects, it provides an accurate allocation scheme for each
feature’s contribution to "post-intervention output changes." In other words,
Causal Shapley Value does not independently rely on mathematical formulas for
causal contribution allocation. Instead, it integrates Shapley Value into the final
effect quantification phase after the completion of causal graph construction and
causal effect identification, ensuring that the allocation results are consistent,
theoretically grounded, and traceable.
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Significance of Causal Shapley Value: The emergence of Causal Shapley
Value represents a key evolution from Conditional Shapley Value. By retain-
ing Shapley Value’s core interpretability and game-theoretic stability, while in-
corporating the strengths of causal inference, Causal Shapley Value addresses
challenges posed by complex dependency structures and multiple effects. This
advancement broadens the applicability of causal inference in machine learning
and decision science, opening up new frontiers for its integration into high-
impact applications.

References:

• Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cam-
bridge University Press.

• Jung, Yonghan, Shiva Prasad Kasiviswanathan, Jin Tian, Dominik Janz-
ing, Patrick Blöbaum and Elias Bareinboim. “On Measuring Causal Con-
tributions via do-interventions.” International Conference on Machine Learn-
ing (2022).

• Physics Evolution and Fusion: Bridging Traditional and Wolfram’s Com-
putational Theories into a New Era (Author’s own paper)

3.2 Why Do-Shapley Could Be Considered the Final Ver-
sion of Shapley Value

The initial versions of Causal Shapley Value retained the excellent interpretabil-
ity of Shapley Value while providing a new perspective for distinguishing correla-
tion from causality in high-dimensional and nonlinear machine learning models.
However, the theoretical framework of classical Causal Shapley Value mainly
targeted partially accessible models or idealized Markovian causal graphs, leav-
ing challenges regarding theoretical completeness. To further refine methods for
quantifying causal contributions, researchers proposed new approaches such as
ICC (Intrinsic Causal Contribution) and Do-Shapley.

Intrinsic Causal Contribution (ICC): The ICC method captures the di-
rect contribution of features in a causal graph through structure-based inter-
ventions. It performs well in cases where the causal graph is Markovian and the
structural functions are invertible, providing a more granular view of feature
contributions. However, ICC lacks axiomatic support and cannot fully distin-
guish between the effects of direct and indirect paths on the target variable.

Do-Shapley: In contrast, Do-Shapley introduces a rigorous causal axiomatic
framework based on do-interventions. It explicitly satisfies the classical game-
theoretic properties of Shapley Value, such as completeness, causal symmetry,
causal irrelevance, and causal approximation. Do-Shapley can compute causal
contributions in semi-Markovian causal graphs, distinguish between direct and
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indirect contributions of features, and does not require complete access to the
model outputs. This establishes a closer theoretical connection between causal
graph modeling and Shapley Value, further improving the accuracy and oper-
ability of feature causal contribution quantification.

Key Properties of Causal Shapley Values: In the context of Causal Shap-
ley Values, the following four properties are particularly relevant (using English
for compatibility with international literature):

Version Assignment Symmetry Irrelevance Approximation
Basic Causal Shapley ✓ maybe maybe notsupporting
ICC (Intrinsic Causal Contribution) ✓ maybe maybe maybe
Do-Shapley ✓ ✓ ✓ ✓

• Assignment: Whether each variable can be assigned a clear causal con-
tribution value.

• Symmetry: Whether variables with equal contributions are treated fairly.

• Irrelevance: Whether irrelevant variables are excluded.

• Approximation: Whether reasonable approximations can be provided
under imperfect information.

Advantages of Do-Shapley: Do-Shapley is currently the most comprehen-
sive and theoretically grounded method, satisfying all four properties. These
properties can be seen as an extension of the classical axiomatic framework of
Shapley Value, tailored to causal inference and practical applications:

• Preserving Core Interpretability and Fairness: The properties of
Symmetry and Irrelevance represent causal adaptations of the classical
axioms of "symmetry" and "null player." They ensure intuitive and fair
allocation in a causal context.

• Enhancing Feasibility and Practicality for Causal Inference: The
properties of Assignment and Approximation allow causal contribution
methods to be applied in real-world scenarios with imperfect information,
complementing the idealized nature of classical Shapley axioms.

• Providing a New Criterion for Method Selection: When a causal
Shapley method satisfies these four properties, it often demonstrates strong
theoretical validity and practical value (e.g., Do-Shapley). This provides a
clear benchmark for evaluating candidate methods and encourages further
refinement to meet these critical properties.

In fields such as healthcare, economics, social science, and environmental
science, causal inference is a core research focus. Fair, interpretable, and feasi-
ble causal contribution allocation often presents a critical challenge. These four
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properties provide a unified framework for the development of Causal Shapley
methods, enabling them to remain rigorous even in complex application scenar-
ios.

In summary, Do-Shapley stands out among various versions of Causal Shap-
ley Value because it fulfills the four key properties: Assignment, Symmetry, Ir-
relevance, and Approximation. These properties represent a natural extension
of the classical axiomatic framework of Shapley Value in the context of causal
inference. Do-Shapley combines mathematical rigor with practical feasibility,
offering promising prospects for both theoretical and applied research.

Notably, Do-Shapley is the only method that satisfies all four properties.
Any causal allocation method meeting these properties can be considered a
form of Do-Shapley, as only the combination of Shapley’s incremental calcu-
lation with causal interventions can fulfill these requirements. Although the
most common implementation is value-function-based Do-Shapley, other imple-
mentations (e.g., those based on different effect decomposition approaches) may
also exist, demonstrating the theoretical uniqueness and practical flexibility of
Do-Shapley.

References:

• Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cam-
bridge University Press.

• On Measuring Causal Contributions via Do-Shapley (Author’s own pa-
per).

3.3 How Causality Works and Why It Is Precise: From
Classical Experimental Data to Observational Data in
XAI

The Workflow of Do-Shapley: Do-Shapley is implemented through the
following workflow:

1. Creating the Causal Graph

In this phase, researchers rely on domain knowledge and theoretical assumptions
to identify key variables and their interactions, constructing a causal structure
model. Common methods include Structural Equation Modeling (SEM) and
Directed Acyclic Graphs (DAGs). This process is critical, as the accuracy of the
causal graph directly affects the identification and estimation of causal effects.

2. Causal Effect Identification

Once the causal graph is established, the next task is to determine whether the
target intervention effect (e.g., P (Y |do(X))) can be identified from observational
data. This involves the following steps:
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1. Determining the Intervention Method: Decide whether to perform
a **do-intervention** or infer the intervention effect from **identifiable
observation**:

• **Do-intervention:** External manipulation directly fixes the value
of a variable, severing its connection with its causal parents.

• **Identifiable Observation:** Use causal inference rules (e.g., the
backdoor criterion) to transform observational distributions into in-
tervention distributions.

2. Handling C-Components: Identify which variables belong to C-components
(i.e., groups of variables connected by bidirectional edges). These variables
may be affected by latent confounders, making direct identification of in-
tervention effects infeasible. C-components need to be decomposed or
removed to ensure model identifiability.

3. Running Causal Effect Identification Algorithms: After address-
ing C-components, causal effect identification algorithms (e.g., Pearl’s ID
algorithm or its extensions) can be used to determine whether the interven-
tion effect is uniquely identifiable from observational data. This process
systematically decomposes causal paths and computes intervention effects
based on the causal graph’s structure.

Through this process, the target causal effect’s identifiability is ensured while
mitigating confounding paths and handling unobservable influences.

3. Causal Effect Estimation

Once the causal effect has been successfully identified, the next step is to es-
timate and quantify it. The primary task in this phase is to calculate causal
contributions and allocate them to individual features (or variables), providing a
causal explanation of feature importance. However, directly computing Causal
Shapley Values in practice is infeasible because the definition requires enumerat-
ing the intervention effects E[Y |do(S)] for all subsets S ⊆ V . The computational
complexity grows exponentially with the number of features (O(2n)).

To address this challenge, the following three efficient and robust estimation
methods are proposed:

• **IPW (Inverse Probability Weighting):** Adjusts sample weights to ap-
proximate intervention effects by simulating the distribution of variables
after intervention through reweighted observational data.

• **REG (Regression-Based Estimation):** Uses regression models to esti-
mate intervention effects by fitting functional relationships between vari-
ables and directly predicting changes in the target variable post-intervention.

• **DML (Double/Debiased Machine Learning):** Combines the strengths
of IPW and REG by employing machine learning techniques to debias
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and correct model errors, offering stronger robustness and convergence,
especially in scenarios with model misspecification or noise.

These methods not only meet the need for precise characterization of fea-
ture importance but also maintain fidelity to causal relationships. By combining
IPW, REG, and DML, the computational efficiency is optimized, reducing com-
plexity in high-dimensional scenarios.

The Role of the Backdoor Criterion

Although the definition of Do-Shapley relies on the intervention distribution
P (Y |do(S)), the backdoor criterion allows researchers to infer intervention ef-
fects from observational data. By controlling for confounding variables Z, the
observational distribution P (Y,X,Z) can be transformed into the intervention
distribution P (Y |do(X)):

P (Y |do(X)) =
∑
Z

P (Y |X,Z)P (Z).

This method enables causal inference without performing actual intervention
experiments, instead using observational data to simulate intervention effects.
This is particularly important in XAI, which often depends on generated data
rather than experimental designs. By leveraging the backdoor criterion, Do-
Shapley can quantify the causal contribution of features to model predictions,
offering reliable causal explanations for complex, high-dimensional models.

Reference: Tian, Jin and Judea Pearl. On the Identification of Causal Ef-
fects. (2015).

4 Demo: From Causal Graph to a Cleaner, More
Readable Causal Graph via Do-Shapley Prun-
ing

4.1 Scenario Description
Suppose we have a causal graph annotated with Do-Shapley values, describing
how an individual’s study behavior (Study) affects their exam score (Exam
Score) through multiple mediating factors.

Study (0.5) → Sleep (0.3) → Exam Score (1.0)

Study (0.5) → Stress (0.1) → Exam Score (1.0)

Study (0.5) → Coffee (0.05)

Coffee (0.05) → Sleep (0.3)

Coffee (0.05) → Stress (0.1)
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Causal Contributions:

• Study: 0.5 (Directly impacts the exam score and also indirectly influences
it through other variables).

• Sleep: 0.3 (Indirectly improves the exam score by enhancing the individ-
ual’s condition).

• Stress: 0.1 (High stress reduces the exam score).

• Coffee: 0.05 (Has a minimal impact on the exam score, only indirectly
influencing it).

4.2 Pruning the Causal Graph Using Do-Shapley Values
Based on the Do-Shapley value assessment of causal contributions, we can prune
edges or nodes that have a negligible causal effect on the target variable (Exam
Score).

Pruning Rules:

• Set a contribution threshold (e.g., 0.1).

• Remove edges or nodes with causal contributions below the threshold.

Pruned Causal Graph:

After pruning, the simplified causal graph retains only the significant paths:

Study (0.5) → Sleep (0.3) → Exam Score (1.0)

Study (0.5) → Stress (0.1) → Exam Score (1.0)

Result: The pruned graph is cleaner and more readable, focusing only on
the significant contributions to the exam score. Paths or nodes with negligible
influence (e.g., Coffee with 0.05 contribution) have been removed, ensuring the
graph emphasizes the most critical relationships.

4.3 Comparison with Traditional Causal Graph Pruning
The pruning operation demonstrated here is a practical application of the desir-
able properties of Do-Shapley values. By quantifying the causal contribution of
each node to the target variable, we can mathematically and rigorously remove
paths and nodes with negligible causal impact, thereby optimizing the structure
of the causal graph. Shapley values clearly illustrate the relative importance of
each path, facilitating a quantitative analysis of both direct and indirect causal
effects.

Compared to traditional pruning methods, causal graphs with Do-Shapley
values retain traces of minor factors even after pruning. Instead of outright
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removing such nodes, Do-Shapley can annotate hidden or minor factors, showing
how much they still influence intermediate variables like Stress or Sleep, even if
their overall contribution to the target variable (e.g., Exam Score) is small.

Preserving Scientific Rigor: This approach explicitly marks the causal
graph as a pruned version, ensuring that while the graph is simplified, it re-
tains scientific rigor. For instance, traditional pruning methods might directly
delete the Coffee node, whereas Do-Shapley provides annotations to indicate
that although Coffee has been pruned due to its minimal contribution, it still
has a measurable influence on Stress and Sleep.

Scalability to Large-Scale Causal Graphs: While the example provided
here is a simplified, small-scale causal graph, real-world applications often in-
volve much larger causal graphs, such as those used in explainable AI (XAI)
to interpret the behavior of deep learning models. For example, Harvard Uni-
versity’s GraphXAI project offers a dataset generator called ShapeGGen, capa-
ble of creating graph datasets with thousands of nodes and edges to evaluate
the explainability of graph neural networks (GNNs). These large-scale causal
graphs help researchers identify which features critically influence decisions and
prune redundant features, thereby improving model interpretability and com-
putational efficiency.

Benefits of Pruning at Scale:

• Reduced Computational Complexity: Pruning redundant causal paths
significantly reduces the computational burden of analyzing large-scale
graphs, enabling efficient engineering-level analysis.

• Improved Visualization and Interpretability: Pruned causal graphs
serve as intuitive tools for visualizing causal structures. Experts and non-
experts alike can better understand the causal logic of models, avoiding
distractions from insignificant paths. This has the potential to transform
how we interpret XAI and fine-tune expert systems.

Implications for Trust and Practical Applications: This method not
only enhances the transparency and interpretability of complex systems but also
lays a solid foundation for building trust in AI technologies and expanding their
practical applications. By offering cleaner, more comprehensible causal graphs,
Do-Shapley enables researchers and practitioners to bridge the gap between
model complexity and human understanding.

Reference: Harvard University GraphXAI Project: (https://zitniklab.hms.harvard.edu/projects/GraphXAI/)
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4.4 Conclusion
This pruning process, guided by Do-Shapley values, improves the interpretabil-
ity of causal graphs by eliminating low-contribution paths and nodes. It ensures
that the resulting graph provides a clear and concise representation of the most
influential factors affecting the target variable, enhancing both usability and
readability in XAI applications.

5 Summary and Extension
• **Shapley Value** has a well-established position in XAI (Explainable Ar-

tificial Intelligence). The SHAP family effectively mitigates computational
challenges in large-scale scenarios.

• **Causal Shapley** provides more precise measurements for problems
with complex dependencies and genuine causal interactions.

• **Do-Shapley** satisfies key properties of causal axiomatization, enabling
fine-grained estimation of feature causal contributions even in partially
observable or identifiable data scenarios.

• Utilizing Do-Shapley for causal graph pruning can yield more interpretable
and readable structures, enhancing the understanding of complex models.

• Future research could focus on optimizing estimation algorithms and de-
veloping a complete, systematic process for visualization, further promot-
ing real-world applications in the industry.

6 Appendix: Comparison of SHAP-Approximations
and the Estimation Methods (REG, IPW, DML)
of Do-Shapley

6.1 Overview of Methods
This section compares SHAP-approximations with the estimation methods of
Do-Shapley, including REG (Regression-Based Estimation), IPW (Inverse Prob-
ability Weighting), and DML (Double/Debiased Machine Learning). Due to
time constraints, detailed results are not yet presented. However, the structure
below provides placeholders for future data.

6.2 Comparison

6.3 Test Results (Placeholder)
Future experiments will evaluate the methods in the following dimensions:
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• Computation Efficiency: Measured by the average runtime under dif-
ferent feature dimensions and sample sizes.

• Scalability: Assessed by the performance when scaling to high-dimensional
data or large datasets.

• Robustness: Evaluated under varying levels of noise, missing data, or
model misspecification.

• Causal Precision: Assessed by the accuracy in estimating causal con-
tributions in synthetic and real-world datasets.
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